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PERFORMANCE CHARACTERISTICS OF A 

PREFORMED ELLIPTICAL PARACHUTE AT ALTITUDES 

BETWEEN 200,000 AND 100,000 FEXT OBTAINED 

BY IN-FLIGHT PHOTOGRAPHY 

By Charles H. Whitlock and Harold N. Murrow 

The performance charac te r i s t ics  of a preformed e l l i p t i c a l  parachute a t  
a l t i t u d e s  between 200,000 and 100,000 f e e t  have been obtained by means of in - f l igh t  
photography. 
tudes of about 200,000 f e e t  i f  conditions such as twisting of t h e  suspension l i n e s  
o r  draping of t h e  suspension l i n e s  over t h e  canopy do not occur. Drag-coefficient 
values between 0.6 and 0.8 were found t o  be reasonable f o r  t h i s  type of parachute 
system i n  t h e  a l t i t u d e  range between 200,000 and 100,000 f e e t .  

It w a s  demonstrated t h a t  t h i s  type of parachute w i l l  open at a l t i -  

INTRODUCTION 

Throughout aviat ion h is tory  man has been in te res ted  i n  t h e  parachute as a 
means of deceleration. 
of space research both as an a id  t o  recovery operations and as a means of 
obtaining meteorological data. 
t i o n  i s  t o  e j e c t  a meteorological sensor from a rocket vehicle at  the  apogee of 
t he  t r a j ec to ry  and then slowly t o  lower the  sensor by parachute through t h e  upper 
atmospheric region. Atmospheric propert ies  including wind data  are usual ly  
obtained during t h i s  type of descent. 

More recent ly  parachutes have been applied t o  t h e  f i e l d  

The usual method of performing the  la t te r  opera- 

One of t h e  basic  problems i n  obtaining da ta  by t h i s  method i s  t h a t  of being 

The Langley Research Center has undertaken an invest igat ion 
able  t o  predict  parachute i n f l a t i o n  and s t a b i l i t y  charac te r i s t ics  a t  a l t i t udes  
above 100,000 f e e t .  
i n t o  t h i s  problem of parachute performance i n  an e f f o r t  t o  provide useful  informa- 
t i o n  f o r  appl icat ion t o  present and fu ture  meteorological sounding-rocket systems. 

The present tests were conducted t o  obtain t h e  performance charac te r i s t ics  
This 

A temperature sensor i s  then 

of a parachute which is  a component of an ex is t ing  meteorological system. 
system bas ica l ly  consis ts  of a long slender solid-propellant rocket vehicle which 
boosts a payload t o  a l t i t udes  above 200,000 f e e t .  
separated from t h e  vehicle and lowered t o  ear th  by means of a preformed e l l i p t i -  
c a l  parachute. This pa r t i cu la r  parachute w a s  chosen f o r  t e s t i n g  because l a rge  



differences were noted between values of predicted and f l i g h t  descent veloci t ies ,  
par t icu lar ly  at a l t i t udes  above 100,000 f ee t .  A s  pointed out i n  reference 1, 
experimental descent ve loc i t ies  were much higher than ve loc i t ies  indicated by 
ana ly t ica l  predictions. 
although it w a s  shown i n  the  reference t h a t  the  most probable reason f o r  e r ror  
might be t h a t  e i the r  (1) the  parachute w a s  not completely inf la t ing  a t  the higher 
a l t i t udes  o r  (2) there  was an inaccurate estimate of drag var ia t ion.  The purpose 
of these tests w a s  t o  determine actual  parachute in f l a t ion  character is t ics  and 
drag var ia t ions from both in- f l igh t  and ground support data. 
t h i s  informatioq the  parachute opening sequence and subsequent motions were photo- 
graphed by means of a recoverable camera package subst i tuted i n  place of the  usual 
temperature sensing instrument. 
canopy inf la t ion  data and computed drag coeff ic ients  from three successful 
launchings with camera packages. 

The reasons f o r  these discrepancies were unknown, 

I n  order t o  gather 

The purpose of t h i s  report i s  t o  present both 

The parachutes tes ted  were of a preformed e l l i p t i c a l  configuration, were 
15 f e e t  i n  diameter when f u l l y  inf la ted,  and were p a r t i a l l y  s i lver ized f o r  radar- 
tracking purposes. 
f igure 1. Details of the  parachute construction, including the  canopy gore pat- 
tern, and the viewing angle of t he  camera lens  a re  a lso shown i n  the  figure.  
Important parachute specifications a re  given i n  the  following table:  

The same type of parachute used i n  these t e s t s  is  shown i n  

Parachute type . . . . . . . . . . . . . . . . .  
Diameter, f t  . . . . . . . . . . . . . . . . . .  
Weight, l b  . . . . . . . . . . . . . . . . . . .  
Canopy material  (22 percent s i lver ized)  . . . .  
Permeability (cu ft/min airflow per sq f t  canopy 

at 1/2 in .  H20): 

Silverized portion . . . . . . . . . . . . . .  
Number of gores . . . . . . . . . . . . . . . .  
Number of suspension l i nes  . . . . . . . . . . .  
Length of suspension l ines ,  f t  . . . . . . . . .  
Length of r i s e r  l ine ,  i n .  . . . . . . . . . . .  

White portion . . . . . . . . . . . . . . . .  

Suspension-line material  . . . . . . . . . . . .  

Parachute pack material . . . . . . . . . . . .  

. . . . . .  . . . . . .  . . . . . . .  . . . . . .  
area 

. . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  

Preformed e l l i p t i c a l  . . . . . . .  15 . . . . . . .  2 . . . .  3-momme silk 

. . . . .  600 & 150 . . . . .  475 k 150 . . . . . . .  12 . . . . . . .  24 . . . . . . .  Nylon . . . . . . .  28 . . . . . . .  24 . Lightweight canvas 

I n  general, t he  parachutes were packed i n  a four-petal  canvas bag which was posi- 
tioned between two fiber-glass staves inside a 4.5-inch-diameter cyl indrical  metal 
container approximately 11.5 inches i n  length. Components of the  parachute pack- 
age a re  shown i n  f igure 2 which i s  a four-step sequence describing parachute 
deployment. The parachute container i s  attached t o  the  forward end of the launch 
vehicle immediately forward of a gas-generator separation device. 
A t  a given time, the  gas generator f i r e s  and builds up a high pressure behind the  
aft  bulkhead ( f ig .  2(d)) which i n  tu rn  forces the  fiber-glass staves forward, 

(See f i g .  3 . )  
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thereby shearing the  attachment pins f o r  t he  forward bulkhead; t he  sequence a t  
t h i s  point i s  shown i n  f igure 2( a ) .  Note the  lanyard i n  f igure 2( a) which nor- 
mally i s  attached t o  the launch vehicle. The parachute, canvas bag, and f ibe r -  
glass  staves are ejected from the  forward end of t he  cyl indrical  container. 
f iber-glass staves f a l l  f r e e  and the  2-pound break cord, shown i n  f igure 2( c), 
a s s i s t s  i n  unfolding the  parachute canopy before the  lanyard becomes tau t ,  thus 
severing the  break cord. For these t e s t s ,  the  forward bulkhead was deleted and 
the  parachute r i s e r  l i n e  was attached t o  the  aft portion of the  camera package. 

"he 

PAYLOAD DESCRIPTION 

I n  order t o  meet the  objectives of t h i s  experiment, the  photographic scheme 
The physical and aero- shown i n  the  descent configuration of f igure 1 was used. 

dynamic properties of t he  exis t ing meteorological system were simulated as closely 
as  possible with available hardware. Estimates of t he  environment encountered by 
a payload were obtained from launch-vehicle performance estimates and the few 
experimental measurements available. On the  bas i s  of these estimates, the  camera 
package shown i n  f igure 4 w a s  constructed. 

Basically, the  payload w a s  a slender tangent -ogive-shaped camera package 
attached forward of the  cyl indrical  parachute container. (See f i g .  3 . )  The 
camera package consisted of a monocoque s t ructure  housing an instrumentation sys- 
tem which contained a camera, ba t t e r i e s ,  and act ivat ion switch. The s t ructure  
w a s  made of a phenolic nylon s h e l l  shielded against  aerodynamic heating by a 
protective coating. 
type 16-IIUII camera powered by ba t t e r i e s .  
under an acceleration of 50g i n  a l l  direct ions and the  camera package w a s  undam- 
aged by 7Og shocks i n  the  longitudinal ax is  direction. "he camera package w a s  
a l s o  dynamically balanced a t  the  ant ic ipated spin ra te .  "he f i l m  u t i l i zed  w a s  
a high-speed extra-thin-base type and the  cameras were operated a t  16 frames 
per second with a shut ter  s e t t i ng  of 1/1500 second. 
were u t i l i zed  f o r  the  three f l i g h t s  (120' on f l i g h t s  A and B and 90' on 
f l i g h t  C ) .  
from t h i s  camera system. One of the  camera packages a t  recovery i s  shown i n  
f igure 5. 

The photography system used an NASA modified A i r  Force N-9 
"he camera w a s  qual i f ied f o r  operation 

Wide angle lenses ( f / l l )  

Approximately 3 minutes of f i lm records per f l i g h t  were available 

The t o t a l  payload weight w a s  approximately 13.1 pounds, which consisted of 
a 9-pound camera package, a 2-pound parachute, and a 2.1-pound parachute com- 
partment, and compares with the  12-pound t o t a l  payload weight during ascent of 
t he  existing meteorological system. During descent, t he  9-pound suspended weight 
of the  camera package, as compared with the  4.75-pound suspended weight of t he  
meteorological sensor, w a s  not expected t o  a f fec t  t he  parachute deployment 
sequence. This heavier weight, however, could a f fec t  s t a b i l i t y  of the  descending 
system and would, of course, increase the  descent velocity. 
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TEST RESULTS AND DISCUSSION 

. =_ - - 

Flight Altitude, 
f t  
- 

A , . .  223, ooo 
B m  a .  a9,500 
c . . .  207, coo 

Operations and Vehicle Performance 

- ~ ._ _ _  

Velocity, Dynamic pressure, 
fPS lb/sq f t  

~ 

650 0 057 
600 0.052 
800 0.151 

The fl ight t e s t s  were conducted at t h e  s m a l l  m i s s i l e  range of t he  White 
Sands Missile Range, New Mexico. 
h i s t o r i e s  f o r  t h e  ascent phase of t h e  three  flights. The rocket vehicles were 
launched a t  an elevat ion angle of 83O, burned f o r  approximately 30 seconds, and 
subsequently coasted t o  apogee. Near apogee, t h e  separation sequence occurred 
and t h e  parachute w a s  subjected t o  t h e  environment given i n  -the following table:  

Figure 6 shows both a l t i t u d e  and veloci ty  time 

- - 

The environmental differences between t h e  th ree  f l i g h t s  were within expected 
limits f o r  launch vehicles of t h i s  type and w e r e  not expected t o  a f fec t  the  
experimental analysis  . 

Parachute Performance 

Descent time h i s t o r i e s  of a l t i t u d e  and t o t a l  ve loc i ty  are given i n  f igure  7 
f o r  t h e  three  f l i g h t s .  
t h e  first 94 seconds following separation. 
i t y  data  f o r  t h i s  region ( f i g .  7) were estimated from plotting-board records. 
The low values of t o t a l  veloci ty  f o r  f l i g h t s  A and C at about 16 seconds may 
probably be a t t r i bu ted  t o  apogee conditions. 
increased u n t i l  terminal veloci ty  w a s  a t ta ined  a t  approximately 40 t o  50 seconds 
after separation. 

For f l i g h t  B, reduced radar da ta  were not avai lable  f o r  
Consequently, t h e  a l t i t u d e  and veloc- 

From these minima t h e  ve loc i t i e s  

Figures 8(a) t o  8 ( c )  present sample photographs from each of t h e  f l i g h t s  at  
various a l t i t udes .  Also shown f o r  comparison purposes are photographs of t h e  
parachute i n  t h e  full-open configuration, which were obtained from hel icopter  
drop tests near sea leve l .  These photographs show t h e  parachute canopy with i t s  
s i lver ized  gores ins ide  a c i rcu lar  f i e l d  of view. The riser l i n e  projects  from 
t h e  l e f t  border of t h e  pictures  and extends toward t h e  parachute canopy because 
of i t s  r e l a t ive  posi t ion with the  camera l ens  as shown i n  f igure  5 .  From 
f l i g h t s  B and C both t h e  sun and horizon may be seen clearly;  however, t h i s  i s  
not possible i n  p ic tures  from f l i g h t  A because t h e  lens  became fogged, possibly 
due t o  residue from t h e  separation device. 
l i n e  across t h e  lens  a t  frequent in te rva ls  allows t h e  canopy t o  be viewed. Other 
prominent images t h a t  can be seen i n  these photographs a re  (1) a smudge on t h e  
l e n s  f o r  f l i g h t  B, (2 )  some t i s s u e  paper, used as lens  protection, adhering t o  
t h e  r i s e r  l i n e  i n  f l i g h t  C, and ( 3 )  clouds i n  t h e  background f o r  t he  sea-level 

Fortunately, t h e  shadow of the  r i s e r  
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conditions. 
t h e  f l i g h t  films, but i n  some instances f luctuat ions i n  t h e  canopy w e r e  qu i te  
rapid and thus made a "typical" frame somewhat d i f f i c u l t  t o  present.  

The photographs presented are an attempt t o  show typ ica l  frames from 

To determine t h e  amount of parachute inf la t ion ,  individual  frames from t h e  
f l i g h t  films were analyzed and t h e  projected a rea  w a s  evaluated and compared with 
t h a t  of t he  full-open parachute obtained from hel icopter  drop t e s t s  with iden t i ca l  
payloads. The r e su l t s  a r e  shown i n  f igure  9 where var ia t ion  of t h e  canopy pro- 
jected area i s  shown as a percent of m a x i m u m  ( f u l l  open) projected area over t h e  
a l t i t u d e  range where photographs w e r e  obtained. It i s  estimated t h a t  t h e  para- 
chute area could be determined within an accuracy of t h e  order of 10 percent due 
t o  lens  d i s to r t ion  and nonuniform canopy shape. I n  viewing t h e  films, it w a s  
observed tha t  f luctuat ions of t h e  canopy, commonly ca l led  "breathing, occurred 
at a l l  a l t i tudes .  This condition w a s  variable and more violent  a t  some times 
than others.  
jected area osc i l l a t ions  (sometimes within experimental accuracy). 

The bands i n  f igure  9 represent envelopes which encompass t h e  pro- 

For f l i g h t  A t h e  parachute apparently remained completely open after i n i t i a l  
o sc i l l a t ions  were damped out.  A twist ing osc i l l a t ion  w a s  observed although it 
w a s  not severe enough t o  affect  opening charac te r i s t ics .  This twist ing motion 
w a s  advantageous f o r  analysis  of f l i g h t  A since the  lens  w a s  apparently fogged by 
gases from the  separation device. A s  the  camera package twisted, a shadow from 
t h e  r i s e r  l i n e  f e l l  across t h e  lens  and made viewing of t h e  canopy possible (see 
f i g .  8 ( a ) ) .  

For f l i g h t  B t he  parachute experienced osc i l l a t ions  of  t h e  canopy area  j u s t  
a f t e r  separation. This motion w a s  damped out by t h e  time an a l t i t u d e  of 
190,000 f e e t  w a s  reached. 
l 7 0 , O O O  fee t ,  a t  which time it began t o  open more fu l ly .  
open when the  f i l m  w a s  depleted at 123,000 f e e t .  
p ic tures  indicated that,  as t h e  parachute began t o  open, t h e  spin r a t e  of t h e  
camera package apparently caused t h e  parachute suspension l i n e s  t o  t w i s t ,  
deterr ing opening of t h e  canopy. Approximately a minute later, t h e  l i n e s  began 
t o  untwist and the  parachute continued t o  open. 

The parachute remained about 10 percent open down t o  
It w a s  about 60 percent 

Further review of t h e  motion 

Inspection of f igure  g ( c )  shows tha t ,  f o r  f l i g h t  C, t h e  parachute experi- 
enced motions t h a t  were more v io len t  and e r r a t i c  than were evidenced i n  f l i g h t s  A 
and B. For t h i s  descent, however, it w a s  not possible f o r  the parachute t o  
i n f l a t e  en t i r e ly  since two suspension l i n e s  were caught over t h e  top of t h e  can- 
opy, as can be seen i n  f igure  8 ( c ) .  
t h i s  parachute w a s  only about 70 percent open at 134,000 f e e t  where t h e  f i lm 
ended. 

This probably accounts f o r  t h e  f a c t  t h a t  

An overa l l  assessment of t h e  three  f l i g h t s  shows t h a t  t h e  parachute perform- 
ance w a s  inconsistent even though physical charac te r i s t ics  of t h e  camera and 
parachute packages were t h e  same. I n  each f l i g h t  canopy f luc tua t ions  w e r e  evident 
immediately following separation. It w a s  a l so  evident i n  all f l i g h t s  t h a t  a 
twist ing of t h e  suspension l i n e s  w a s  experienced although t h e  condition w a s  more 
severe i n  f l ight B. Inspection of t h e  parachutes upon recovery showed some small 
burn holes, indicat ing a need f o r  adequate protect ion from burning residue caused 
by the  pyrotechnic separation device. 
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Estimates of D r a g  Coefficient 

A s  w a s  discussed ear l ie r ,  t he  discrepancies between predicted and in- f l igh t  
parachute performance (par t icu lar ly  the  descent r a t e s )  might be due t o  a com- 
binat ion of (1) the  f a i l u r e  of t he  parachute t o  i n f l a t e  properly and (2 )  an 
inaccurate estimate of parachute drag var ia t ion.  From the  r e su l t s  of these f l i g h t  
tests, values of the  "effective" drag coefficient,  CD i n  t h e  v e r t i c a l  direction, 
were calculated. These calculations were based on the  assumption t h a t  the  re ta r -  
dation force equals t h e  e f fec t ive  drag force which may be expressed as follows: 

where 

W 

g .. 
Z 

P 

v = i  
S 

CD 

weight of parachute and camera package (11 l b )  

acceleration of gravi ty  (assumed constant at  32.2 f t /sec2)  

v e r t i c a l  acceleration, posi t ive downward, f t / sec2  

atmospheric density, slugs/cu f t  (1962 standard atmosphere assumed) 

descent veloci ty  f t / s e c  

measured projected canopy area (based on the  f l i g h t  film), sq f t  

e f fec t ive  drag coeff ic ient  

The var ia t ion of descent velocity f o r  t h e  three f l i g h t s  i s  presented i n  
f igure  10. These data  were determined from di f fe ren t ia t ion  of t he  radar tracking 
pos i t iona l  data. Drag-coefficient calculations were . in i t ia ted  a t  a l t i t udes  where 
it w a s  evident t h a t  the  descending system w a s  near terminal velocity.  This was 
approximately 15,000 f e e t  below apogee as  shown i n  f igure 7. Radar data were 
fur ther  d i f fe ren t ia ted  t o  obtain the  v e r t i c a l  acceleration data  shown i n  fig- 
ure  11. No data  a re  shown f o r  flight B due t o  the  absence of reduced radar data. 
By u t i l i z i n g  experimental. values of 2, z, and S, effect ive drag coeff ic ients  
f o r  f l i g h t s  A and C were determined from equations (1) and a re  shown i n  f igure 12 
as a function of velocity.  Reference 2 indicates  t h a t  t h i s  re la t ionship i s  val id  
f o r  parachutes. Investigation indicated t h a t  drag-coefficient var ia t ions showed 
no de f in i t e  t rend when related t o  Mach number. 
f o r  flight B.) 
f igure  9. It i s  believed t h a t  the  drag-coefficient values obtained from f l i g h t  A 
a re  representative of t h i s  type of parachute since all indications a re  t h a t  it 
apparently performed normally. 
when the film w a s  expended, t he  assumption was made t h a t  t h i s  condition prevailed 
throughout the  remaining portion of the  descent. On the bas i s  of t h i s  assumption 

.. 

(Again, no data a re  presented 
The bands correspond t o  the  canopy area var ia t ions presented i n  

Since the parachute of f l i g h t  A w a s  f u l l y  inf la ted  
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and of t h e  u t i l i z a t i o n  of radar tracking data t o  lower a l t i tudes ,  t h e  so l id  curve 
i n  f igure  12 extending t o  lower ve loc i t ies  resul ted.  

Also shown i n  f igure 12 by t h e  dashed curve i s  a calculated drag-coefficient 
var ia t ion  f o r  t h e  same type of parachute with t h e  l i g h t e r  suspended weight 
(4.75 pounds compared with 9 pounds f o r  t h e  f l i g h t s  presented herein).  
curve w a s  computed from radar tracking data with the  assumption of a f u l l y  
in f l a t ed  canopy f o r  a typ ica l  f l i g h t  selected from a number of f l i g h t s  made with 
t h e  operational meteorological system. 

The dashed 

A comparison of t h e  so l id  and dashed curves shows t h e  e f fec t ive  drag coef- 
f i c i e n t s  t o  be s i m i l a r  (between 0.6 and 0.8) at  t h e  higher ve loc i t ies .  
t u r e  i n  t h e  curves occurs at  ve loc i t i e s  below about 70 f t / sec .  The reasons f o r  
t h e  deviation i n  t h e  dashed curve are unknown, although a possible cause may be 
derived from the  dirscussion i n  reference 2. It i s  s t a t ed  i n  t h i s  reference t h a t  
a parachute w i l l  exhibi t  coning motion for heavy suspended weights and gl iding 
motion (which gives higher e f f ec t ive  drag) f o r  l i g h t e r  suspended weights. Para- 
chutes a l so  experience a t r a n s i t i o n  from coning t o  gl iding motion depending on 
s t a b i l i t y  conditions. It i s  known t h a t  t he  ex is t ing  meteorological system does, 
i n  fac t ,  experience coning a t  high a l t i t u d e s  as i s  shown i n  f igure  13 i n  a 
sequence of photographs from a typ ica l  f l i g h t  a t  t he  NASA Wallops Station. These 
pictures  were taken from a ground-camera i n s t a l l a t i o n  when t h e  descending system 
w a s  at  approximately l 5 0 , O O O  f e e t .  It i s  possible, then, t h a t  t h e  parachute 
investigated herein experiences a s t a b i l i t y  t r ans i t i on  at  about 100,000 f e e t  with 
t h e  l i g h t e r  suspended weight used i n  operational meteorological f l i g h t s  but had 
not yet  reached t h i s  t r a n s i t i o n  a t  the  end of t he  usable radar data period which 
occurred a t  40,000 f e e t  f o r  t h e  heavy suspended weight of these t e s t s .  

A depar- 

CONCLUDING REMARKS 

It w a s  demonstrated t h a t  preformed e l l i p t i c a l  parachutes w i l l  open a t  a l t i -  
tudes of about 200,000 f e e t  i f  conditions such as twist ing of t h e  suspension 
l i n e s  o r  draping of the  suspension l i n e s  over t he  canopy do not occur. From 
these t e s t s ,  it appears t h a t  it would be desirable  t o  reduce the  i n i t i a l  spin 
r a t e  of t h e  package a t  separation f rom t h e  launch vehicle and t o  provide a means 
of damping t h i s  movement a f t e r  parachute deployment. The parachute performance 
i n  these tests w a s  inconsis tent  because o f  these undesirable e f fec ts .  Drag- 
coeff ic ient  computations, based on in - f l i gh t  photographs showing area variations,  
indicated values between 0.6 and 0.8 f o r  t h i s  type of parachute system, although 
an increase a t  lower a l t i t udes  may occur. Regarding high-alt i tude parachute per- 
formance, it would be of considerable i n t e r e s t  t o  inves t iga te  fur ther  t h e  problems 
of parachute deployment and t r a n s i t i o n  from coning t o  g l id ing  motions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 23, 1963. 

7 



REFEEENCES 

1. Murrow, Harold N., and Barker, Lawrence E., Jr. : An Analytical Study of the 
Wind-Following Characteristics of a Parachute at High Altitudes. 
ISA 16th Annual Instrument-Automation Conf. and Exhibit, vol. 16 - pt. 11, 

1961 Proc. 

1961, pp. 169-LA-61-1 - 169-LA-61-8. 

2. Heinrich, Helmut G.: D r a g  and Stability of Parachutes. Aero. Eng. Rev., 
vol.  15, no. 6, June 1956, pp. 73-81. 

8 



Figure 1.- Descent configuration. L- 63- 7516 
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Figure 2.- Description of parachute deployment. L-65-7517 
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Figure 3. -  Photograph of f l i g h t  vehicle.  (Official  U.S. Amy photograph.) L-63 -7518 
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Figure 5.- Camera package at recovery. (Off ic ia l  U.S. A r m y  photograph.) L-63-7319 
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